3.8.55 \(\int \frac {x^{15/2}}{(a+c x^4)^3} \, dx\) [755]

Optimal. Leaf size=329 \[ -\frac {x^{9/2}}{8 c \left (a+c x^4\right )^2}-\frac {9 \sqrt {x}}{64 c^2 \left (a+c x^4\right )}+\frac {9 \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{256 \sqrt {2} (-a)^{7/8} c^{17/8}}-\frac {9 \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{256 \sqrt {2} (-a)^{7/8} c^{17/8}}-\frac {9 \tan ^{-1}\left (\frac {\sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{256 (-a)^{7/8} c^{17/8}}-\frac {9 \tanh ^{-1}\left (\frac {\sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{256 (-a)^{7/8} c^{17/8}}+\frac {9 \log \left (\sqrt [4]{-a}-\sqrt {2} \sqrt [8]{-a} \sqrt [8]{c} \sqrt {x}+\sqrt [4]{c} x\right )}{512 \sqrt {2} (-a)^{7/8} c^{17/8}}-\frac {9 \log \left (\sqrt [4]{-a}+\sqrt {2} \sqrt [8]{-a} \sqrt [8]{c} \sqrt {x}+\sqrt [4]{c} x\right )}{512 \sqrt {2} (-a)^{7/8} c^{17/8}} \]

[Out]

-1/8*x^(9/2)/c/(c*x^4+a)^2-9/256*arctan(c^(1/8)*x^(1/2)/(-a)^(1/8))/(-a)^(7/8)/c^(17/8)-9/256*arctanh(c^(1/8)*
x^(1/2)/(-a)^(1/8))/(-a)^(7/8)/c^(17/8)-9/512*arctan(-1+c^(1/8)*2^(1/2)*x^(1/2)/(-a)^(1/8))/(-a)^(7/8)/c^(17/8
)*2^(1/2)-9/512*arctan(1+c^(1/8)*2^(1/2)*x^(1/2)/(-a)^(1/8))/(-a)^(7/8)/c^(17/8)*2^(1/2)+9/1024*ln((-a)^(1/4)+
c^(1/4)*x-(-a)^(1/8)*c^(1/8)*2^(1/2)*x^(1/2))/(-a)^(7/8)/c^(17/8)*2^(1/2)-9/1024*ln((-a)^(1/4)+c^(1/4)*x+(-a)^
(1/8)*c^(1/8)*2^(1/2)*x^(1/2))/(-a)^(7/8)/c^(17/8)*2^(1/2)-9/64*x^(1/2)/c^2/(c*x^4+a)

________________________________________________________________________________________

Rubi [A]
time = 0.20, antiderivative size = 329, normalized size of antiderivative = 1.00, number of steps used = 16, number of rules used = 12, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.800, Rules used = {294, 335, 220, 218, 214, 211, 217, 1179, 642, 1176, 631, 210} \begin {gather*} \frac {9 \text {ArcTan}\left (1-\frac {\sqrt {2} \sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{256 \sqrt {2} (-a)^{7/8} c^{17/8}}-\frac {9 \text {ArcTan}\left (\frac {\sqrt {2} \sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}+1\right )}{256 \sqrt {2} (-a)^{7/8} c^{17/8}}-\frac {9 \text {ArcTan}\left (\frac {\sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{256 (-a)^{7/8} c^{17/8}}+\frac {9 \log \left (-\sqrt {2} \sqrt [8]{-a} \sqrt [8]{c} \sqrt {x}+\sqrt [4]{-a}+\sqrt [4]{c} x\right )}{512 \sqrt {2} (-a)^{7/8} c^{17/8}}-\frac {9 \log \left (\sqrt {2} \sqrt [8]{-a} \sqrt [8]{c} \sqrt {x}+\sqrt [4]{-a}+\sqrt [4]{c} x\right )}{512 \sqrt {2} (-a)^{7/8} c^{17/8}}-\frac {9 \tanh ^{-1}\left (\frac {\sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{256 (-a)^{7/8} c^{17/8}}-\frac {9 \sqrt {x}}{64 c^2 \left (a+c x^4\right )}-\frac {x^{9/2}}{8 c \left (a+c x^4\right )^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^(15/2)/(a + c*x^4)^3,x]

[Out]

-1/8*x^(9/2)/(c*(a + c*x^4)^2) - (9*Sqrt[x])/(64*c^2*(a + c*x^4)) + (9*ArcTan[1 - (Sqrt[2]*c^(1/8)*Sqrt[x])/(-
a)^(1/8)])/(256*Sqrt[2]*(-a)^(7/8)*c^(17/8)) - (9*ArcTan[1 + (Sqrt[2]*c^(1/8)*Sqrt[x])/(-a)^(1/8)])/(256*Sqrt[
2]*(-a)^(7/8)*c^(17/8)) - (9*ArcTan[(c^(1/8)*Sqrt[x])/(-a)^(1/8)])/(256*(-a)^(7/8)*c^(17/8)) - (9*ArcTanh[(c^(
1/8)*Sqrt[x])/(-a)^(1/8)])/(256*(-a)^(7/8)*c^(17/8)) + (9*Log[(-a)^(1/4) - Sqrt[2]*(-a)^(1/8)*c^(1/8)*Sqrt[x]
+ c^(1/4)*x])/(512*Sqrt[2]*(-a)^(7/8)*c^(17/8)) - (9*Log[(-a)^(1/4) + Sqrt[2]*(-a)^(1/8)*c^(1/8)*Sqrt[x] + c^(
1/4)*x])/(512*Sqrt[2]*(-a)^(7/8)*c^(17/8))

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 217

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 218

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]},
Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !Gt
Q[a/b, 0]

Rule 220

Int[((a_) + (b_.)*(x_)^(n_))^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]
}, Dist[r/(2*a), Int[1/(r - s*x^(n/2)), x], x] + Dist[r/(2*a), Int[1/(r + s*x^(n/2)), x], x]] /; FreeQ[{a, b},
 x] && IGtQ[n/4, 1] &&  !GtQ[a/b, 0]

Rule 294

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^
n)^(p + 1)/(b*n*(p + 1))), x] - Dist[c^n*((m - n + 1)/(b*n*(p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x
], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  !ILtQ[(m + n*(p + 1) + 1)/n, 0]
&& IntBinomialQ[a, b, c, n, m, p, x]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rubi steps

\begin {align*} \int \frac {x^{15/2}}{\left (a+c x^4\right )^3} \, dx &=-\frac {x^{9/2}}{8 c \left (a+c x^4\right )^2}+\frac {9 \int \frac {x^{7/2}}{\left (a+c x^4\right )^2} \, dx}{16 c}\\ &=-\frac {x^{9/2}}{8 c \left (a+c x^4\right )^2}-\frac {9 \sqrt {x}}{64 c^2 \left (a+c x^4\right )}+\frac {9 \int \frac {1}{\sqrt {x} \left (a+c x^4\right )} \, dx}{128 c^2}\\ &=-\frac {x^{9/2}}{8 c \left (a+c x^4\right )^2}-\frac {9 \sqrt {x}}{64 c^2 \left (a+c x^4\right )}+\frac {9 \text {Subst}\left (\int \frac {1}{a+c x^8} \, dx,x,\sqrt {x}\right )}{64 c^2}\\ &=-\frac {x^{9/2}}{8 c \left (a+c x^4\right )^2}-\frac {9 \sqrt {x}}{64 c^2 \left (a+c x^4\right )}-\frac {9 \text {Subst}\left (\int \frac {1}{\sqrt {-a}-\sqrt {c} x^4} \, dx,x,\sqrt {x}\right )}{128 \sqrt {-a} c^2}-\frac {9 \text {Subst}\left (\int \frac {1}{\sqrt {-a}+\sqrt {c} x^4} \, dx,x,\sqrt {x}\right )}{128 \sqrt {-a} c^2}\\ &=-\frac {x^{9/2}}{8 c \left (a+c x^4\right )^2}-\frac {9 \sqrt {x}}{64 c^2 \left (a+c x^4\right )}-\frac {9 \text {Subst}\left (\int \frac {1}{\sqrt [4]{-a}-\sqrt [4]{c} x^2} \, dx,x,\sqrt {x}\right )}{256 (-a)^{3/4} c^2}-\frac {9 \text {Subst}\left (\int \frac {1}{\sqrt [4]{-a}+\sqrt [4]{c} x^2} \, dx,x,\sqrt {x}\right )}{256 (-a)^{3/4} c^2}-\frac {9 \text {Subst}\left (\int \frac {\sqrt [4]{-a}-\sqrt [4]{c} x^2}{\sqrt {-a}+\sqrt {c} x^4} \, dx,x,\sqrt {x}\right )}{256 (-a)^{3/4} c^2}-\frac {9 \text {Subst}\left (\int \frac {\sqrt [4]{-a}+\sqrt [4]{c} x^2}{\sqrt {-a}+\sqrt {c} x^4} \, dx,x,\sqrt {x}\right )}{256 (-a)^{3/4} c^2}\\ &=-\frac {x^{9/2}}{8 c \left (a+c x^4\right )^2}-\frac {9 \sqrt {x}}{64 c^2 \left (a+c x^4\right )}-\frac {9 \tan ^{-1}\left (\frac {\sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{256 (-a)^{7/8} c^{17/8}}-\frac {9 \tanh ^{-1}\left (\frac {\sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{256 (-a)^{7/8} c^{17/8}}-\frac {9 \text {Subst}\left (\int \frac {1}{\frac {\sqrt [4]{-a}}{\sqrt [4]{c}}-\frac {\sqrt {2} \sqrt [8]{-a} x}{\sqrt [8]{c}}+x^2} \, dx,x,\sqrt {x}\right )}{512 (-a)^{3/4} c^{9/4}}-\frac {9 \text {Subst}\left (\int \frac {1}{\frac {\sqrt [4]{-a}}{\sqrt [4]{c}}+\frac {\sqrt {2} \sqrt [8]{-a} x}{\sqrt [8]{c}}+x^2} \, dx,x,\sqrt {x}\right )}{512 (-a)^{3/4} c^{9/4}}+\frac {9 \text {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt [8]{-a}}{\sqrt [8]{c}}+2 x}{-\frac {\sqrt [4]{-a}}{\sqrt [4]{c}}-\frac {\sqrt {2} \sqrt [8]{-a} x}{\sqrt [8]{c}}-x^2} \, dx,x,\sqrt {x}\right )}{512 \sqrt {2} (-a)^{7/8} c^{17/8}}+\frac {9 \text {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt [8]{-a}}{\sqrt [8]{c}}-2 x}{-\frac {\sqrt [4]{-a}}{\sqrt [4]{c}}+\frac {\sqrt {2} \sqrt [8]{-a} x}{\sqrt [8]{c}}-x^2} \, dx,x,\sqrt {x}\right )}{512 \sqrt {2} (-a)^{7/8} c^{17/8}}\\ &=-\frac {x^{9/2}}{8 c \left (a+c x^4\right )^2}-\frac {9 \sqrt {x}}{64 c^2 \left (a+c x^4\right )}-\frac {9 \tan ^{-1}\left (\frac {\sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{256 (-a)^{7/8} c^{17/8}}-\frac {9 \tanh ^{-1}\left (\frac {\sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{256 (-a)^{7/8} c^{17/8}}+\frac {9 \log \left (\sqrt [4]{-a}-\sqrt {2} \sqrt [8]{-a} \sqrt [8]{c} \sqrt {x}+\sqrt [4]{c} x\right )}{512 \sqrt {2} (-a)^{7/8} c^{17/8}}-\frac {9 \log \left (\sqrt [4]{-a}+\sqrt {2} \sqrt [8]{-a} \sqrt [8]{c} \sqrt {x}+\sqrt [4]{c} x\right )}{512 \sqrt {2} (-a)^{7/8} c^{17/8}}-\frac {9 \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{256 \sqrt {2} (-a)^{7/8} c^{17/8}}+\frac {9 \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{256 \sqrt {2} (-a)^{7/8} c^{17/8}}\\ &=-\frac {x^{9/2}}{8 c \left (a+c x^4\right )^2}-\frac {9 \sqrt {x}}{64 c^2 \left (a+c x^4\right )}+\frac {9 \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{256 \sqrt {2} (-a)^{7/8} c^{17/8}}-\frac {9 \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{256 \sqrt {2} (-a)^{7/8} c^{17/8}}-\frac {9 \tan ^{-1}\left (\frac {\sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{256 (-a)^{7/8} c^{17/8}}-\frac {9 \tanh ^{-1}\left (\frac {\sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{256 (-a)^{7/8} c^{17/8}}+\frac {9 \log \left (\sqrt [4]{-a}-\sqrt {2} \sqrt [8]{-a} \sqrt [8]{c} \sqrt {x}+\sqrt [4]{c} x\right )}{512 \sqrt {2} (-a)^{7/8} c^{17/8}}-\frac {9 \log \left (\sqrt [4]{-a}+\sqrt {2} \sqrt [8]{-a} \sqrt [8]{c} \sqrt {x}+\sqrt [4]{c} x\right )}{512 \sqrt {2} (-a)^{7/8} c^{17/8}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 1.40, size = 287, normalized size = 0.87 \begin {gather*} \frac {-\frac {8 \sqrt [8]{c} \sqrt {x} \left (9 a+17 c x^4\right )}{\left (a+c x^4\right )^2}-\frac {9 \sqrt {2+\sqrt {2}} \tan ^{-1}\left (\frac {\sqrt {1-\frac {1}{\sqrt {2}}} \left (\sqrt [4]{a}-\sqrt [4]{c} x\right )}{\sqrt [8]{a} \sqrt [8]{c} \sqrt {x}}\right )}{a^{7/8}}-\frac {9 \sqrt {2-\sqrt {2}} \tan ^{-1}\left (\frac {\sqrt {1+\frac {1}{\sqrt {2}}} \left (\sqrt [4]{a}-\sqrt [4]{c} x\right )}{\sqrt [8]{a} \sqrt [8]{c} \sqrt {x}}\right )}{a^{7/8}}+\frac {9 \sqrt {2+\sqrt {2}} \tanh ^{-1}\left (\frac {\sqrt {2+\sqrt {2}} \sqrt [8]{a} \sqrt [8]{c} \sqrt {x}}{\sqrt [4]{a}+\sqrt [4]{c} x}\right )}{a^{7/8}}+\frac {9 \sqrt {2-\sqrt {2}} \tanh ^{-1}\left (\frac {\sqrt [8]{a} \sqrt [8]{c} \sqrt {-\left (\left (-2+\sqrt {2}\right ) x\right )}}{\sqrt [4]{a}+\sqrt [4]{c} x}\right )}{a^{7/8}}}{512 c^{17/8}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^(15/2)/(a + c*x^4)^3,x]

[Out]

((-8*c^(1/8)*Sqrt[x]*(9*a + 17*c*x^4))/(a + c*x^4)^2 - (9*Sqrt[2 + Sqrt[2]]*ArcTan[(Sqrt[1 - 1/Sqrt[2]]*(a^(1/
4) - c^(1/4)*x))/(a^(1/8)*c^(1/8)*Sqrt[x])])/a^(7/8) - (9*Sqrt[2 - Sqrt[2]]*ArcTan[(Sqrt[1 + 1/Sqrt[2]]*(a^(1/
4) - c^(1/4)*x))/(a^(1/8)*c^(1/8)*Sqrt[x])])/a^(7/8) + (9*Sqrt[2 + Sqrt[2]]*ArcTanh[(Sqrt[2 + Sqrt[2]]*a^(1/8)
*c^(1/8)*Sqrt[x])/(a^(1/4) + c^(1/4)*x)])/a^(7/8) + (9*Sqrt[2 - Sqrt[2]]*ArcTanh[(a^(1/8)*c^(1/8)*Sqrt[-((-2 +
 Sqrt[2])*x)])/(a^(1/4) + c^(1/4)*x)])/a^(7/8))/(512*c^(17/8))

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 3.
time = 0.15, size = 59, normalized size = 0.18

method result size
derivativedivides \(\frac {-\frac {9 a \sqrt {x}}{64 c^{2}}-\frac {17 x^{\frac {9}{2}}}{64 c}}{\left (x^{4} c +a \right )^{2}}+\frac {9 \left (\munderset {\textit {\_R} =\RootOf \left (c \,\textit {\_Z}^{8}+a \right )}{\sum }\frac {\ln \left (\sqrt {x}-\textit {\_R} \right )}{\textit {\_R}^{7}}\right )}{512 c^{3}}\) \(59\)
default \(\frac {-\frac {9 a \sqrt {x}}{64 c^{2}}-\frac {17 x^{\frac {9}{2}}}{64 c}}{\left (x^{4} c +a \right )^{2}}+\frac {9 \left (\munderset {\textit {\_R} =\RootOf \left (c \,\textit {\_Z}^{8}+a \right )}{\sum }\frac {\ln \left (\sqrt {x}-\textit {\_R} \right )}{\textit {\_R}^{7}}\right )}{512 c^{3}}\) \(59\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(15/2)/(c*x^4+a)^3,x,method=_RETURNVERBOSE)

[Out]

2*(-9/128/c^2*a*x^(1/2)-17/128/c*x^(9/2))/(c*x^4+a)^2+9/512/c^3*sum(1/_R^7*ln(x^(1/2)-_R),_R=RootOf(_Z^8*c+a))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(15/2)/(c*x^4+a)^3,x, algorithm="maxima")

[Out]

1/64*(9*c*x^(17/2) + a*x^(9/2))/(a*c^3*x^8 + 2*a^2*c^2*x^4 + a^3*c) - 9*integrate(1/128*x^(7/2)/(a*c^2*x^4 + a
^2*c), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 672 vs. \(2 (224) = 448\).
time = 0.38, size = 672, normalized size = 2.04 \begin {gather*} \frac {36 \, \sqrt {2} {\left (c^{4} x^{8} + 2 \, a c^{3} x^{4} + a^{2} c^{2}\right )} \left (-\frac {1}{a^{7} c^{17}}\right )^{\frac {1}{8}} \arctan \left (\sqrt {2} \sqrt {a^{2} c^{4} \left (-\frac {1}{a^{7} c^{17}}\right )^{\frac {1}{4}} + \sqrt {2} a c^{2} \sqrt {x} \left (-\frac {1}{a^{7} c^{17}}\right )^{\frac {1}{8}} + x} a^{6} c^{15} \left (-\frac {1}{a^{7} c^{17}}\right )^{\frac {7}{8}} - \sqrt {2} a^{6} c^{15} \sqrt {x} \left (-\frac {1}{a^{7} c^{17}}\right )^{\frac {7}{8}} + 1\right ) + 36 \, \sqrt {2} {\left (c^{4} x^{8} + 2 \, a c^{3} x^{4} + a^{2} c^{2}\right )} \left (-\frac {1}{a^{7} c^{17}}\right )^{\frac {1}{8}} \arctan \left (\sqrt {2} \sqrt {a^{2} c^{4} \left (-\frac {1}{a^{7} c^{17}}\right )^{\frac {1}{4}} - \sqrt {2} a c^{2} \sqrt {x} \left (-\frac {1}{a^{7} c^{17}}\right )^{\frac {1}{8}} + x} a^{6} c^{15} \left (-\frac {1}{a^{7} c^{17}}\right )^{\frac {7}{8}} - \sqrt {2} a^{6} c^{15} \sqrt {x} \left (-\frac {1}{a^{7} c^{17}}\right )^{\frac {7}{8}} - 1\right ) + 9 \, \sqrt {2} {\left (c^{4} x^{8} + 2 \, a c^{3} x^{4} + a^{2} c^{2}\right )} \left (-\frac {1}{a^{7} c^{17}}\right )^{\frac {1}{8}} \log \left (a^{2} c^{4} \left (-\frac {1}{a^{7} c^{17}}\right )^{\frac {1}{4}} + \sqrt {2} a c^{2} \sqrt {x} \left (-\frac {1}{a^{7} c^{17}}\right )^{\frac {1}{8}} + x\right ) - 9 \, \sqrt {2} {\left (c^{4} x^{8} + 2 \, a c^{3} x^{4} + a^{2} c^{2}\right )} \left (-\frac {1}{a^{7} c^{17}}\right )^{\frac {1}{8}} \log \left (a^{2} c^{4} \left (-\frac {1}{a^{7} c^{17}}\right )^{\frac {1}{4}} - \sqrt {2} a c^{2} \sqrt {x} \left (-\frac {1}{a^{7} c^{17}}\right )^{\frac {1}{8}} + x\right ) + 72 \, {\left (c^{4} x^{8} + 2 \, a c^{3} x^{4} + a^{2} c^{2}\right )} \left (-\frac {1}{a^{7} c^{17}}\right )^{\frac {1}{8}} \arctan \left (\sqrt {a^{2} c^{4} \left (-\frac {1}{a^{7} c^{17}}\right )^{\frac {1}{4}} + x} a^{6} c^{15} \left (-\frac {1}{a^{7} c^{17}}\right )^{\frac {7}{8}} - a^{6} c^{15} \sqrt {x} \left (-\frac {1}{a^{7} c^{17}}\right )^{\frac {7}{8}}\right ) + 18 \, {\left (c^{4} x^{8} + 2 \, a c^{3} x^{4} + a^{2} c^{2}\right )} \left (-\frac {1}{a^{7} c^{17}}\right )^{\frac {1}{8}} \log \left (a c^{2} \left (-\frac {1}{a^{7} c^{17}}\right )^{\frac {1}{8}} + \sqrt {x}\right ) - 18 \, {\left (c^{4} x^{8} + 2 \, a c^{3} x^{4} + a^{2} c^{2}\right )} \left (-\frac {1}{a^{7} c^{17}}\right )^{\frac {1}{8}} \log \left (-a c^{2} \left (-\frac {1}{a^{7} c^{17}}\right )^{\frac {1}{8}} + \sqrt {x}\right ) - 16 \, {\left (17 \, c x^{4} + 9 \, a\right )} \sqrt {x}}{1024 \, {\left (c^{4} x^{8} + 2 \, a c^{3} x^{4} + a^{2} c^{2}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(15/2)/(c*x^4+a)^3,x, algorithm="fricas")

[Out]

1/1024*(36*sqrt(2)*(c^4*x^8 + 2*a*c^3*x^4 + a^2*c^2)*(-1/(a^7*c^17))^(1/8)*arctan(sqrt(2)*sqrt(a^2*c^4*(-1/(a^
7*c^17))^(1/4) + sqrt(2)*a*c^2*sqrt(x)*(-1/(a^7*c^17))^(1/8) + x)*a^6*c^15*(-1/(a^7*c^17))^(7/8) - sqrt(2)*a^6
*c^15*sqrt(x)*(-1/(a^7*c^17))^(7/8) + 1) + 36*sqrt(2)*(c^4*x^8 + 2*a*c^3*x^4 + a^2*c^2)*(-1/(a^7*c^17))^(1/8)*
arctan(sqrt(2)*sqrt(a^2*c^4*(-1/(a^7*c^17))^(1/4) - sqrt(2)*a*c^2*sqrt(x)*(-1/(a^7*c^17))^(1/8) + x)*a^6*c^15*
(-1/(a^7*c^17))^(7/8) - sqrt(2)*a^6*c^15*sqrt(x)*(-1/(a^7*c^17))^(7/8) - 1) + 9*sqrt(2)*(c^4*x^8 + 2*a*c^3*x^4
 + a^2*c^2)*(-1/(a^7*c^17))^(1/8)*log(a^2*c^4*(-1/(a^7*c^17))^(1/4) + sqrt(2)*a*c^2*sqrt(x)*(-1/(a^7*c^17))^(1
/8) + x) - 9*sqrt(2)*(c^4*x^8 + 2*a*c^3*x^4 + a^2*c^2)*(-1/(a^7*c^17))^(1/8)*log(a^2*c^4*(-1/(a^7*c^17))^(1/4)
 - sqrt(2)*a*c^2*sqrt(x)*(-1/(a^7*c^17))^(1/8) + x) + 72*(c^4*x^8 + 2*a*c^3*x^4 + a^2*c^2)*(-1/(a^7*c^17))^(1/
8)*arctan(sqrt(a^2*c^4*(-1/(a^7*c^17))^(1/4) + x)*a^6*c^15*(-1/(a^7*c^17))^(7/8) - a^6*c^15*sqrt(x)*(-1/(a^7*c
^17))^(7/8)) + 18*(c^4*x^8 + 2*a*c^3*x^4 + a^2*c^2)*(-1/(a^7*c^17))^(1/8)*log(a*c^2*(-1/(a^7*c^17))^(1/8) + sq
rt(x)) - 18*(c^4*x^8 + 2*a*c^3*x^4 + a^2*c^2)*(-1/(a^7*c^17))^(1/8)*log(-a*c^2*(-1/(a^7*c^17))^(1/8) + sqrt(x)
) - 16*(17*c*x^4 + 9*a)*sqrt(x))/(c^4*x^8 + 2*a*c^3*x^4 + a^2*c^2)

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(15/2)/(c*x**4+a)**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 496 vs. \(2 (224) = 448\).
time = 0.66, size = 496, normalized size = 1.51 \begin {gather*} \frac {9 \, \left (\frac {a}{c}\right )^{\frac {1}{8}} \arctan \left (\frac {\sqrt {-\sqrt {2} + 2} \left (\frac {a}{c}\right )^{\frac {1}{8}} + 2 \, \sqrt {x}}{\sqrt {\sqrt {2} + 2} \left (\frac {a}{c}\right )^{\frac {1}{8}}}\right )}{256 \, a c^{2} \sqrt {-2 \, \sqrt {2} + 4}} + \frac {9 \, \left (\frac {a}{c}\right )^{\frac {1}{8}} \arctan \left (-\frac {\sqrt {-\sqrt {2} + 2} \left (\frac {a}{c}\right )^{\frac {1}{8}} - 2 \, \sqrt {x}}{\sqrt {\sqrt {2} + 2} \left (\frac {a}{c}\right )^{\frac {1}{8}}}\right )}{256 \, a c^{2} \sqrt {-2 \, \sqrt {2} + 4}} + \frac {9 \, \left (\frac {a}{c}\right )^{\frac {1}{8}} \arctan \left (\frac {\sqrt {\sqrt {2} + 2} \left (\frac {a}{c}\right )^{\frac {1}{8}} + 2 \, \sqrt {x}}{\sqrt {-\sqrt {2} + 2} \left (\frac {a}{c}\right )^{\frac {1}{8}}}\right )}{256 \, a c^{2} \sqrt {2 \, \sqrt {2} + 4}} + \frac {9 \, \left (\frac {a}{c}\right )^{\frac {1}{8}} \arctan \left (-\frac {\sqrt {\sqrt {2} + 2} \left (\frac {a}{c}\right )^{\frac {1}{8}} - 2 \, \sqrt {x}}{\sqrt {-\sqrt {2} + 2} \left (\frac {a}{c}\right )^{\frac {1}{8}}}\right )}{256 \, a c^{2} \sqrt {2 \, \sqrt {2} + 4}} + \frac {9 \, \left (\frac {a}{c}\right )^{\frac {1}{8}} \log \left (\sqrt {x} \sqrt {\sqrt {2} + 2} \left (\frac {a}{c}\right )^{\frac {1}{8}} + x + \left (\frac {a}{c}\right )^{\frac {1}{4}}\right )}{512 \, a c^{2} \sqrt {-2 \, \sqrt {2} + 4}} - \frac {9 \, \left (\frac {a}{c}\right )^{\frac {1}{8}} \log \left (-\sqrt {x} \sqrt {\sqrt {2} + 2} \left (\frac {a}{c}\right )^{\frac {1}{8}} + x + \left (\frac {a}{c}\right )^{\frac {1}{4}}\right )}{512 \, a c^{2} \sqrt {-2 \, \sqrt {2} + 4}} + \frac {9 \, \left (\frac {a}{c}\right )^{\frac {1}{8}} \log \left (\sqrt {x} \sqrt {-\sqrt {2} + 2} \left (\frac {a}{c}\right )^{\frac {1}{8}} + x + \left (\frac {a}{c}\right )^{\frac {1}{4}}\right )}{512 \, a c^{2} \sqrt {2 \, \sqrt {2} + 4}} - \frac {9 \, \left (\frac {a}{c}\right )^{\frac {1}{8}} \log \left (-\sqrt {x} \sqrt {-\sqrt {2} + 2} \left (\frac {a}{c}\right )^{\frac {1}{8}} + x + \left (\frac {a}{c}\right )^{\frac {1}{4}}\right )}{512 \, a c^{2} \sqrt {2 \, \sqrt {2} + 4}} - \frac {17 \, c x^{\frac {9}{2}} + 9 \, a \sqrt {x}}{64 \, {\left (c x^{4} + a\right )}^{2} c^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(15/2)/(c*x^4+a)^3,x, algorithm="giac")

[Out]

9/256*(a/c)^(1/8)*arctan((sqrt(-sqrt(2) + 2)*(a/c)^(1/8) + 2*sqrt(x))/(sqrt(sqrt(2) + 2)*(a/c)^(1/8)))/(a*c^2*
sqrt(-2*sqrt(2) + 4)) + 9/256*(a/c)^(1/8)*arctan(-(sqrt(-sqrt(2) + 2)*(a/c)^(1/8) - 2*sqrt(x))/(sqrt(sqrt(2) +
 2)*(a/c)^(1/8)))/(a*c^2*sqrt(-2*sqrt(2) + 4)) + 9/256*(a/c)^(1/8)*arctan((sqrt(sqrt(2) + 2)*(a/c)^(1/8) + 2*s
qrt(x))/(sqrt(-sqrt(2) + 2)*(a/c)^(1/8)))/(a*c^2*sqrt(2*sqrt(2) + 4)) + 9/256*(a/c)^(1/8)*arctan(-(sqrt(sqrt(2
) + 2)*(a/c)^(1/8) - 2*sqrt(x))/(sqrt(-sqrt(2) + 2)*(a/c)^(1/8)))/(a*c^2*sqrt(2*sqrt(2) + 4)) + 9/512*(a/c)^(1
/8)*log(sqrt(x)*sqrt(sqrt(2) + 2)*(a/c)^(1/8) + x + (a/c)^(1/4))/(a*c^2*sqrt(-2*sqrt(2) + 4)) - 9/512*(a/c)^(1
/8)*log(-sqrt(x)*sqrt(sqrt(2) + 2)*(a/c)^(1/8) + x + (a/c)^(1/4))/(a*c^2*sqrt(-2*sqrt(2) + 4)) + 9/512*(a/c)^(
1/8)*log(sqrt(x)*sqrt(-sqrt(2) + 2)*(a/c)^(1/8) + x + (a/c)^(1/4))/(a*c^2*sqrt(2*sqrt(2) + 4)) - 9/512*(a/c)^(
1/8)*log(-sqrt(x)*sqrt(-sqrt(2) + 2)*(a/c)^(1/8) + x + (a/c)^(1/4))/(a*c^2*sqrt(2*sqrt(2) + 4)) - 1/64*(17*c*x
^(9/2) + 9*a*sqrt(x))/((c*x^4 + a)^2*c^2)

________________________________________________________________________________________

Mupad [B]
time = 1.14, size = 158, normalized size = 0.48 \begin {gather*} -\frac {\frac {17\,x^{9/2}}{64\,c}+\frac {9\,a\,\sqrt {x}}{64\,c^2}}{a^2+2\,a\,c\,x^4+c^2\,x^8}-\frac {9\,\mathrm {atan}\left (\frac {c^{1/8}\,\sqrt {x}}{{\left (-a\right )}^{1/8}}\right )}{256\,{\left (-a\right )}^{7/8}\,c^{17/8}}+\frac {\mathrm {atan}\left (\frac {c^{1/8}\,\sqrt {x}\,1{}\mathrm {i}}{{\left (-a\right )}^{1/8}}\right )\,9{}\mathrm {i}}{256\,{\left (-a\right )}^{7/8}\,c^{17/8}}+\frac {\sqrt {2}\,\mathrm {atan}\left (\frac {\sqrt {2}\,c^{1/8}\,\sqrt {x}\,\left (\frac {1}{2}-\frac {1}{2}{}\mathrm {i}\right )}{{\left (-a\right )}^{1/8}}\right )\,\left (-\frac {9}{512}-\frac {9}{512}{}\mathrm {i}\right )}{{\left (-a\right )}^{7/8}\,c^{17/8}}+\frac {\sqrt {2}\,\mathrm {atan}\left (\frac {\sqrt {2}\,c^{1/8}\,\sqrt {x}\,\left (\frac {1}{2}+\frac {1}{2}{}\mathrm {i}\right )}{{\left (-a\right )}^{1/8}}\right )\,\left (-\frac {9}{512}+\frac {9}{512}{}\mathrm {i}\right )}{{\left (-a\right )}^{7/8}\,c^{17/8}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(15/2)/(a + c*x^4)^3,x)

[Out]

(atan((c^(1/8)*x^(1/2)*1i)/(-a)^(1/8))*9i)/(256*(-a)^(7/8)*c^(17/8)) - (9*atan((c^(1/8)*x^(1/2))/(-a)^(1/8)))/
(256*(-a)^(7/8)*c^(17/8)) - ((17*x^(9/2))/(64*c) + (9*a*x^(1/2))/(64*c^2))/(a^2 + c^2*x^8 + 2*a*c*x^4) - (2^(1
/2)*atan((2^(1/2)*c^(1/8)*x^(1/2)*(1/2 - 1i/2))/(-a)^(1/8))*(9/512 + 9i/512))/((-a)^(7/8)*c^(17/8)) - (2^(1/2)
*atan((2^(1/2)*c^(1/8)*x^(1/2)*(1/2 + 1i/2))/(-a)^(1/8))*(9/512 - 9i/512))/((-a)^(7/8)*c^(17/8))

________________________________________________________________________________________